EEqn.H
Go to the documentation of this file.
1 {
2  volScalarField& he = thermo.he();
3 
4  fvScalarMatrix EEqn
5  (
6  fvm::ddt(rho, he) + fvm::div(phi, he)
7  + fvc::ddt(rho, K) + fvc::div(phi, K)
8  + (
9  he.name() == "e"
10  ? fvc::div
11  (
13  p,
14  "div(phiv,p)"
15  )
16  : -dpdt
17  )
18  - fvm::laplacian(alphaEff, he)
19  ==
21  + fvOptions(rho, he)
22  );
23 
24  EEqn.relax();
25 
26  fvOptions.constrain(EEqn);
27 
28  EEqn.solve();
29 
30  fvOptions.correct(he);
31 
32  thermo.correct();
33  radiation->correct();
34 }
CGAL::Exact_predicates_exact_constructions_kernel K
tmp< GeometricField< Type, fvPatchField, volMesh > > laplacian(const GeometricField< Type, fvPatchField, volMesh > &vf, const word &name)
Definition: fvcLaplacian.C:45
volScalarField & dpdt
scalar Sh
Definition: solveChemistry.H:2
U
Definition: pEqn.H:86
volScalarField & p
Definition: createFields.H:51
psiReactionThermo & thermo
Definition: createFields.H:32
tmp< surfaceScalarField > absolute(const tmp< surfaceScalarField > &tphi, const volVectorField &U)
Return the given relative flux in absolute form.
Definition: fvcMeshPhi.C:187
tmp< GeometricField< Type, fvPatchField, volMesh > > div(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Definition: fvcDiv.C:47
fvScalarMatrix EEqn(fvm::ddt(rho, he)+mvConvection->fvmDiv(phi, he)+fvc::ddt(rho, K)+fvc::div(phi, K)+(he.name()=="e"?fvc::div(fvc::absolute(phi/fvc::interpolate(rho), U), p,"div(phiv,p)"):-dpdt)-fvm::laplacian(turbulence->alphaEff(), he)==reaction->Sh()+fvOptions(rho, he))
tmp< surfaceScalarField > interpolate(const RhoType &rho)
fv::IOoptionList & fvOptions
surfaceScalarField & phi
const radiation::radiationModel & radiation
tmp< GeometricField< Type, fvPatchField, volMesh > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
Definition: fvcDdt.C:45
const volScalarField & alphaEff
Definition: setAlphaEff.H:93